
Build Your First Audio Plug-in with JUCE

19/11/2021

The JUCE Team -
Attila Szarvas, Ed Davies, Reuben Thomas, Tom Poole

Overview

What is JUCE?

Creating JUCE-based projects

Building audio plug-ins

Testing audio plug-ins

2

3

{
 setColour (blue);
 drawRect (0, 0, 100, 50);

 setColour (red);
 drawRect (100, 0, 100, 50);
}

4

{
 setColour (blue);
 drawRect (0, 0, 100, 50);

 setColour (red);
 drawRect (100, 0, 100, 50);
}

5

{
 setColour (blue);
 drawRect (0, 0, 100, 50);

 setColour (red);
 drawRect (100, 0, 100, 50);
}

6

{
 setColour (blue);
 drawRect (0, 0, 100, 50);

 setColour (red);
 drawRect (100, 0, 100, 50);
}

7

{
 setColour (blue);
 drawRect (0, 0, 100, 50);

 setColour (red);
 drawRect (100, 0, 100, 50);
}

8

C++ C++ C++ Obj-C++

9

Win32
Native
Activity

POSIX/
X11 AppKit/UIKit

10

macOS/iOS

{
 CGRect rc = { 0, 0, 100, 50 };
 CGContextSetRGBFillColor (context, 0.0f, 0.0f, 1.0f);
 CGContextFillRect (context, &rc);

 rc = { 100, 0, 100, 50 };
 CGContextSetRGBFillColor (context, 1.0f, 0.0f, 0.0f);
 CGContextFillRect (context, &rc);
}

11

Windows

{
 Rect rc = { 0, 0, 100, 50 };
 FillRect (context, &rc, RGB (0, 0, 255));

 rc = { 100, 0, 100, 50};
 FillRect (context, &rc, RGB (255, 0, 0));
}

12

13

14

15

Cocoa

16

17

18

19

20

{

 g.setColour (juce::Colours::blue);

 g.drawRect (0, 0, 100, 50);

 g.setColour (juce::Colours::red);

 g.drawRect (100, 0, 100, 50);

}

21

Audio MIDI GUI 2D 3D Network

22

Audio MIDI GUI 2D 3D Network

23

Audio MIDI GUI 2D 3D Network

juce::AudioProcessor

24

Building an Audio Plug-in

25

During the workshop
- All the slides are numbered
- Post questions in the Discord channel
- We’ll take a couple of breaks during the session
- The slides are available in the workshop materials, so you can revisit sections

26

Creating a plug-in using JUCE
We’re going to walk through the creation of a simple delay effect plug-in

- Setting up a JUCE project using the Projucer
- Writing the C++ plug-in code in an IDE
- Compiling the different plug-in formats
- Adding plug-in parameters
- Creating a GUI
- Testing the plug-in

27

What won’t be covered
(but you may want to look into)

- Plug-in configurations - multibus, surround
- Mobile platforms
- Performance optimisations

- Profiling
- Compiler settings

- Release process
- Installers
- Code signing

28

Workshop materials
Contents:

- The workspace directory is where we’ll build our plug-in
- The Plugins directory is where you will find your compiled plug-ins
- Numbered directories containing source code snapshots corresponding to

each section

29

Creating a plug-in project

30

#01: Creating a plug-in project
We’re now using the workshop checkpoints

- The #01 in the title signals that we’re using the contents of the 01 directory
- To return to this point in the workshop you can delete the contents of the

workspace folder and copy the contents of the 01 folder into the workspace
folder

- We’ve already done this for step 01, so we’re all starting from the same place

31

#01: Creating a plug-in project
Objectives of this section:

- Go through the common project configurations settings in the Projucer
- Export the project and open it in your IDE of choice

- Xcode
- Visual Studio
- Whichever Linux editor you want to use

- Build the empty template project
- Load the plug-in in the TestHost

In the Projucer, open the workspace/SimpleDelay.jucer project.

32

#01: The project

33

#01: Project settings

34

#01: File explorer

35

#01: Module settings

36

#01: Exporter Settings

37

#01: Generate IDE project files

38

#01: Generate IDE project files
We’ve seen a lot of Projucer settings but we don’t need to change any for this
workshop!

Creating a Linux Makefile is a little different - there are no IDEs associated with
Makefiles so after saving your project you need to run make from the command
line

39

#01: Project structure

AudioProcessor

40

AudioProcessorEditor

#01: Running Standalone (macOS)

41

#01: Running Standalone (Windows)

42

#01: Running Standalone (Linux)

43

cd workspace/Builds/LinuxMakefile

make

./build/SimpleDelay

#01: Running Standalone

44

#01: Building plug-ins (macOS)

4545

#01: Building plug-ins (Windows)

4646

#01: Building plug-ins (Linux)

47

cd workspace/Builds/LinuxMakefile

make

#01: Running in the TestHost

48

A simple host application for testing our plug-in can be found in the workshop
materials:

- TestHost/macOS/TestHost.app
- TestHost/Win64/TestHost.exe
- TestHost/Linux/TestHost

Launch the one appropriate for your platform.

#01: Running in the TestHost

49

Audio input sources

Gain fader & level
meters

Plug-in section

Oscilloscope

#01: Running in the TestHost

50

Find the SimpleDelay plug-in that you’ve built in the Plugins folder and drop it
onto the plug-in section of the TestHost app.

Click on the plug-in name to open the UI.

Break

51

#02: Modifying audio
Objectives of this section:

- Edit source files in your IDE
- Add a very simple gain reduction to the plug-in
- Listen to the results

Copy the contents of the 02 directory into workspace.

Open your IDE project file

- workspace/Builds/VisualStudio2019/SimpleDelay.sln
- workspace/Builds/macOS/SimpleDelay.xcodeproj

52

#02: Edit the AudioProcessor

53

#02: The SimpleDelayAudioProcessor class
The SimpleDelayAudioProcessor class has a lot of methods

- All of these methods have been automatically written by the template created
by the Projucer

- You can change the contents of these methods to change the behavior of the
plug-in

The only one needed for this section is processBlock

54

#02: processBlock

55

#02: What does processBlock do?

56

processBlock is called repeatedly by the plug-in host with a chunk of audio to
process

For plug-ins the amount of audio to process usually corresponds to the “buffer
size” setting of the host (1024, 512, …)

Be careful here! processBlock will be called on the audio thread, which is not
the same as that used for drawing a GUI or handling mouse events (more on this
a little later)

#02: juce::AudioBuffer<float>

57

AudioBuffer is a class containing non-interleaved channels of audio data
represented as floats, and methods to access and modify them

Non-interleaved: separate channels of continuous audio data

Floats: each sample is represented by a floating point number in the range -1.0 to
1.0

processBlock is passed a reference to an AudioBuffer containing the
incoming audio data. We create an audio effect by modifying this data.

#02: Modifying audio

58

#02: Fixed gain reduction

59

#02: Testing the fixed gain reduction

60

- Load the plug-in in the TestHost
- Toggle the bypass
- Hear the gain reduction when audio is going

through the plug-in

#03: Plug-in parameters
Objectives of this section:

Create a parameter to control the gain reduction

- Add a parameter to your plug-in interface
- Use the parameter the change how the audio is processed
- Change the parameter value in a (auto-generated) user interface
- Listen to how the audio is changed in real time

61

#03: What is a parameter?
Parameters are how plug-in hosts control plug-ins

- They are exposed as part of the plug-in format’s interface
- Hosts can query plug-ins to find out what parameters they offer

- Parameters can be changed via the plug-in’s GUI

- Parameters can be changed via automation
- Though they can also be marked as non-automatable

62

#03: Parameter types
All derived from the AudioProcessorParameter class

- Methods for getting and setting parameter values and properties
- Added to, and then managed by, your AudioProcessor
- JUCE provides some basic types to get your started

- AudioParameterFloat
- AudioParameterBool
- AudioParameterChoice
- AudioParameterInt

63

#03: Adding a parameter

64

#03: Adding a parameter

65

#03: Using a parameter in processBlock

66

#03: Use an automatically generated user interface

67

#03: Compile the plug-in and load it

68

#04: Creating the delay effect

69

Objectives of this section:

Add some less trivial audio processing

- Add some more parameters
- Configure our audio processing algorithm in prepareToPlay
- Implement a basic delay effect
- Play with the effect in TestHost

This section requires quite a lot of typing to complete. Start from the contents of
the 05 folder and review the changes rather than typing along.

Begin compiling the plug-in formats now!

#04: What is a delay effect?

70

An echo of the incoming audio

The audio at time t is combined with a recursively attenuated audio at time (t - nD)
where D is the delay time and n = 1,2,3,4,...

Increasing the delay time D increases the time between echos

Increasing the attenuation decreases the time taken for the echos to fade away

Our SimpleDelay plug-in will feature a fixed delay time, but a variable feedback
(opposite of attenuation) with a dry/wet mix control

#04: Add some more parameters

71

#04: The delay algorithm

72

A simple circular buffer of audio history

- The size of the circular buffer will determine the (fixed) delay
- Each call to processBlock we will add incoming audio to the circular buffer
- The output audio will be a combination of the input and the contents of the

circular buffer

#04: Add a circular buffer to PluginProcessor.h

73

#04: Configure the buffer in prepareToPlay

74

#04: Implement delay algorithm in processBlock

75

#04: Implement delay algorithm in processBlock

76

#04: Implement a delay algorithm in processBlock

77

#04: Implement delay algorithm in processBlock

78

#04: Have a play with the plug-in

79

#05: Parameter management and state

80

Objectives of this section:

Use an AudioProcessorValueTreeState to manage your parameters

- See improved parameter handling
- Serialise and deserialise your plug-ins state

This section requires quite a lot of typing to complete. Start from the contents of
the 06 folder and review the changes rather than typing along.

#05: Parameter management

81

#05: Adding an
AudioProcessorValueTreeState

82

#05: Adding an
AudioProcessorValueTreeState

83

#05: Parameter management

84

#05: Saving and restoring plug-in state

85

When plug-in hosts save and load projects, each plug-in must save and restore its
state

- getStateInformation (juce::MemoryBlock& destData)
- setStateInformation (const void* data, int sizeInBytes)

The plug-in’s state must be serialised to, and deserialised from, a block of memory
managed by the host.

#05: Saving plug-in state

86

#05: Restoring plug-in state

87

#05: See it working!

88

- Load the plug-in in the TestHost
- Tweak some parameters
- Unload the plug-in
- Re-load and see the restored state!

Host is calling getStateInformation to retrieve and store the state and
passes it to the new plug-in instance via setStateInformation

#05: Have a play with the plug-in

89

Break

90

#06: Adding a GUI

91

Objectives of this section:

Display a custom GUI and draw some graphics

- Basic shapes
- Text

#06: Remove the generic GUI

92

#06: Our custom GUI

93

#06: Drawing in paint

94

#06: Threads

95

Be careful here!

- The GUI is rendered on the “main” (GUI, message) thread
- processBlock is called on the audio thread

It’s very easy to create race conditions, where one thread is modifying a bit of
memory whilst another thread is reading it.

This is easily the most complicated aspect of working with real-time audio.

Using JUCE’s AudioParameter classes and an
AudioProcessorValueTreeState makes things much simpler.

#06: Draw a square

96

x

y

#06: Lots of GUI code incoming

97

From now until the next break there will be a lot of code to add as we put together
a GUI that’s more than a few basic shapes

Don’t worry about keeping up!

During and after the break there will be time to experiment with your own GUIs

#06: Something more advanced

98

#06: Something more advanced

99

#06: Something more advanced

100

#06: Something more advanced

101

#07: Components

102

Objectives of this section:

Create some interactive GUI elements

- Add some sliders
- Handle layout changes in resized

#07: JUCE Components

103

JUCE GUIs are trees of components

- You can create your own; the AudioProcessorEditor is a Component
- Parent components are responsible for laying out child components
- Mouse events and keyboard focus can be passed between them
- JUCE has a selection of common widget components you can use

#07: Add some sliders to PluginEditor.h

104

#07: Configure the sliders in PluginEditor.cpp

105

#07: Layout the sliders in resized

106

#07: GUI with Sliders

107

#08: Connecting GUI controls to plug-in parameters

108

Objectives of this section:

Control the plug-in from the GUI

- Use the AudioProcessorValueTreeState attachment classes to link
Sliders to plug-in parameters

#08: Add some attachments to PluginEditor.h

109

#08: We need to pass the state to our editor

110

#08: Linking Slider to plug-in parameters

111

#09: The interactive plug-in

112

Break

113

TESTING IN HOSTS

114

Debugging
What is a debugger?

- The most useful tool in a programmer’s arsenal!
- GDB, LLDB, Microsoft Visual Studio Debugger
- CLI/GUI
- Examine program state, pause when conditions are met

What is a breakpoint?

- Can be set via the CLI or GUI
- Program execution pauses when hit

115

Debugging
- Debugging standalone plug-in is simple as we control the whole process

- Debugging the plug-in inside an actual host is slightly more complicated as
we are running inside a different process (the host)

- Debuggers can attach to a separate process to allow you to debug and set
breakpoints in your code

116

macOS

117

macOS

118

macOS

119

macOS

120

macOS

121

Windows

122

Windows

123

Windows

124

Windows

125

Linux

cd workspace/Builds/LinuxMakefile

make CONFIG=Debug

gdb ./TestHost/Linux/TestHost

break SimpleDelayAudioProcessor::processBlock

run

126

Linux

127

Out-of-process loading
- Some hosts load plug-ins in a separate process
- Bitwig, Reaper (with some settings), AUv3s

- Need to attach to the plug-in process not the host process:
- Xcode: Debug->Attach to Process by PID or Name…
- Visual Studio: Debug->Attach to Process…
- GDB: attach <PID>

128

macOS Notarised Hosts
- Since macOS Catalina (10.15), apps distributed outside the App Store must

be notarised
- Apps can only be debugged with if they have the

com.apple.security.get-task-allow entitlement set to true
- Must be false for notarisation to succeed
- However it is possible to re-sign host binaries!

129

macOS Notarised Hosts
- Get app’s entitlements using:

codesign -d --entitlements :- /path/to/host.app

- Modify them to include

<key>com.apple.security.get-task-allow</key>
 <true/>

- Set the new entitlements using:

codesign --force --options runtime --sign - --entitlements
/path/to/plist "/path/to/app"

130

TESTING WITH TOOLS

131

auval
- Apple’s command line AU verification tool
- Tests basic AudioUnit functionality

auval -v aufx DLAY JUCE

132

pluginval
- Cross-platform plug-in validation tool for testing AU/VST/VST3
- https://github.com/Tracktion/pluginval for source code and tagged releases
- Can be run on the command line or with a GUI

133

https://github.com/Tracktion/pluginval

pluginval

pluginval --strictness-level 10 --validate SimpleDelay.vst3

134

Possible plug-in improvements
- Parameter change smoothing
- A variable delay length
- Fractional delay lengths
- A LookAndFeel to style the widgets

135

136

https://github.com/juce-framework/JUCE

https://juce.com/

https://juce.com/learn/tutorials

https://twitter.com/JUCElibrary

https://github.com/juce-framework/JUCE
https://juce.com/
https://juce.com/learn/tutorials
https://twitter.com/JUCElibrary

